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The glass transition is the freezing of a liquid into a solid state without evident structural order.
Although glassy materials are well characterized experimentally, the existence of a phase transition
into the glass state remains controversial. Here, we present numerical evidence for the existence of
a novel first-order dynamical phase transition in atomistic models of structural glass formers. In
contrast to equilibrium phase transitions, which occur in configuration space, this transition occurs
in trajectory space, and it is controlled by variables that drive the system out of equilibrium.
Coexistence is established between an ergodic phase with finite relaxation time and a nonergodic
phase of immobile molecular configurations. Thus, we connect the glass transition to a true phase
transition, offering the possibility of a unified picture of glassy phenomena.

When supercooled far below their melt-
ing temperatures, many liquids be-
come extremely viscous, so much so

that at low enough temperatures these materials
become amorphous solids (1, 2). This phenom-
enon is termed the “glass transition.” The
dynamical behavior of molecules in a glass is
heterogeneous in that there are domains of
mobile and immobile molecules segregated in
space (3–6). At equilibrium, the spatial extent of
these domains is large compared with molecular
dimensions (5) but not so large to imply an actual
phase transition. Indeed, and despite the name
given to it, there is no observation that demon-
strates a link between the glass transition and a
phase transition controlled by traditional thermo-
dynamic variables like temperature and pressure.

Nevertheless, for idealized lattice models, re-
cent work has established the existence of a
nontraditional phase transition, one controlled by
variables that drive a system out of equilibrium
(7–9). Here, we present numerical evidence for
the same behavior in atomistic models of struc-
tural glass formers.We do so with a suitable form
of transition path sampling (10) that allows us to
study ensembles of long trajectories for super-
cooled fluids with several hundred particles
driven out of equilibrium by a field that couples
to their mobility. By adjusting field strength,
trajectories of these supercooled fluids can be
moved reversibly between ergodic and non-
ergodic behaviors. The former are mobile states
with finite relaxation times: the system forgets its
initial state. The latter are immobile states that
remember initial conditions for all time. At inter-
mediate field strengths, trajectory space is filled

by two coexisting domains, one that is ergodic
and one that is nonergodic.

In this way, it appears that dynamic hetero-
geneity observed in the equilibrium dynamics of
supercooled fluids is a precursor to a first-order
phase transition in space-time. First-order tran-
sitions are associated with a discontinuity in an
order parameter and a corresponding singularity
in a partition function, such as the discontinuity
in density for a liquid-vapor transition. These
mathematical features emerge from the principles
of statistical mechanics in the limit of a very large
system, what is usually called the “thermody-
namic” limit (11). For finite systems studied
numerically, there are no such singularities. Evi-
dence of a phase transition in these cases is found
in the behaviors of crossovers from one phase to
another (12). Figure 1 illustrates the system-size
behavior of a crossover. For the transition we
consider, the partition function is a sum over dy-
namical histories (i.e., trajectories) of the system,
and the order parameter measures the amount of

activity or mobility that occurs amongN particles
in a volume V with trajectories that run for an
observation time, tobs. As such, the pertinent mea-
sure of system size is a volume in space-time, the
product N × tobs or equivalently V × tobs. In the
work reported here, we consider spatial volumes
that are 10 to 30 times larger than the correlation
volume of the equilibrium system and observa-
tion times that are 10 to 100 times longer than a
structural relaxation time of the undriven system.
These sizes are sufficient to exhibit behaviors
suggestive of a nonequilibrium phase transition.

Equilibrium and nonequilibrium phase
transitions. To discuss how these behaviors
are revealed, let us first recall how Gibbs’ sta-
tistical mechanics is used to study traditional
equilibrium phase transitions (11). Taking a sys-
tem of N particles at a pressure p, we use the
volume V as an order parameter and take micro-
states to be points in configuration space, x =
(r1, r2, ..., rN), where the vector ri denotes the
position of the ith particle. Different phases, such
as liquid and vapor, are distinguished from the
other by the typical size of V. Changes in V are
coupled to the thermodynamic fieldp or bp, where
1/b stands for Boltzmann’s constant times temper-
ature, kBT. In particular, the probability of a con-
figuration, x, is proportional toP0(x)exp[–bDpV(x)],
whereP0(x) is the probability of x at the reference
field or pressure p0 = p – Dp. The mean volume
of the system with this distribution is 〈V〉p ≡ Vp,
which is depicted schematically in Fig. 1. A first-
order phase transition is manifested by a dis-
continuity at the pressure p = p*. At this value of
the pressure, two phases coexist with respective
volumes per particle v1 and v2.

At coexistence, the distribution function for
the order parameter is bimodal. The two peaks in
the distribution coincide with the two equilibrium
phases. There is a low probability to observe an
intermediate value of V, between Nv1 and Nv2 in
Fig. 1. This low probability decreases exponen-
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Fig. 1. Finite size effects
of equilibrium and non-
equilibrium phase transi-
tions. The mean volume
Vp manifests an equilibri-
um first-order phase tran-
sition at pressure p = p*,
whereas the mean dynam-
ical activity Ks manifests a
dynamical first-order phase
transition at the dynamical
field s = s*. At conditions
of phase coexistence, the
volumedistribution function,
Pp(V), and the dynamical
activity distribution, Ps(K),
are bimodal. Configurations
or trajectories with interme-
diate behaviors lie at much
higher free energies (or lower probabilities) than those of the basins. For finite systems, discontinuous
phase transitions become crossovers with widths that vanish as system size,N, and observation time, tobs,
grow to infinity.
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tially with the free energy cost to form an inter-
face between the phases. The interfacial free
energy grows as N1–1/d, where d is the dimen-
sionality. In the limit of a large system, therefore,
volumes between Nv1 and Nv2 can be achieved
only through a direct constraint on the volume.
Further, at coexistence, the presence of two mac-
roscopic states means that the mean square fluc-
tuation in the volume grows as N2. Because the
response of the volume to a change in pressure is
–∂Vp/∂p = kBT〈(V – Vp)

2〉p, these large fluctua-
tions mean that the width of the crossover il-
lustrated in Fig. 1 vanishes as 1/N.

Analogous statements for trajectory space
begin with a choice of order parameter, which
we have taken to be

K½xðtÞ$ ¼ Dt ∑
tobs

t¼0
∑
N

j¼1
jrjðt þ DtÞ − rjðtÞj2

where rj(t) and x(t) refer to particle position and
point in configuration space, respectively, now as
functions of time t. This chosen order parameter
depends on the system’s path or history over the
observation period, 0 ≤ t ≤ tobs. Square brackets
are used to indicate that the order parameter is a
function of configurations x(t) over the entire
period. The incremental time, Dt, is assigned a
value for which a particle in a normal liquid
would typically move a distance of the order of
a molecular diameter. The sum over time is done
incrementally, every Dt, thus giving a total of
tobs/Dt points in time that contribute. When par-
ticles are mobile, as in a normal liquid,K[x(t)] is
typically large; when particles are immobile, as
in a glass, K[x(t)] is typically small. An order-
disorder transition reflecting extensive changes
in particle mobility is reflected in a discontin-
uous mean value of K[x(t)].

The next step is to consider the probability
distribution for trajectories when this order pa-
rameter is coupled to a field s (13, 14). This dis-
tribution is proportional to P0[x(t)]exp{–sK[x(t)]},
where P0[x(t)] is the equilibrium probability
distribution, that is, the distribution at s = 0. The
equilibrium distribution is for trajectories that are
causal and time-reversal symmetric and that pre-
serve an equilibrium distribution of microstates.
Its partition function is trivial because the dis-
tribution is normalized, that is, 1 ¼ ∑xðtÞP0½xðtÞ$,
where the sum over x(t) is a sum over all tra-
jectories. In contrast, the perturbed distribution

Ps½xðtÞ$ º P0½xðtÞ$expf−sK½xðtÞ$g

has a nontrivial partition function, which for
positive s decreases with increasing tobs. For the
space of trajectories governed by that dis-
tribution at positive s, this space is compressed
with increasing tobs, and, for large enough s,
configurations favored by that distribution are
ones that are visited by immobile or nonergodic
trajectories. Ps[x(t)] is therefore a distribution
for trajectories of a system driven out of
equilibrium.

Laboratory procedures for forming glass are
nonequilibrium processes that stabilize config-
urations from which equilibration is impossible.
One example is the preparation of ultrastable
glasses via vapor deposition (15). We use the
field s as a mathematical device to access these
same configurations, configurations that would
have negligible statistical weight in an undriven
equilibrium dynamics. We do not address how a
particular experimental protocol stabilizes these
nonergodic configurations. We do, however, ad-
dress whether the domain of these configurations
is sufficiently large to produce a nonequilibrium
phase transition.

Transition path sampling of the s ensemble.
In ordinary molecular dynamics or Monte Carlo
trajectories of model systems, trajectories obey
detailed balance and are presumed to be ergodic.
Their distribution, P0[x(t)], can be sampled by
either running a single trajectory for a time n ×

tobs or equivalently carrying out a random walk
through trajectory space, sampling n independent
trajectories each of duration tobs. The latter
procedure is a method of transition path sam-
pling (10). To sample Ps[x(t)], we use transition
path sampling but now accepting or rejecting
random walk steps so as to preserve the weight
P0[x(t)]exp{–sK[x(t)]}. We call the collection of
trajectories harvested in this way the “s ensemble.”
In this ensemble, for models with sufficiently
correlated dynamics, the distribution function for
the order parameter can be bimodal, as indicative
of an order-disorder transition (7–9). This behavior
is illustrated schematically in Fig. 1 in a fashion that
stresses its analogy with the corresponding behavior
of an equilibrium phase transition.

In particular, the average value of the order
parameter we have chosen is extensive in space-
time, that is, Ks = 〈K[x(t)]〉s is proportional to
N × tobs, where the proportionality constant is the
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Fig. 2. Evidence for first-order phase transition in space-time. (A and B) Average space-time order
parameter Ks = 〈K[x(t)]〉s as a function of field s, from molecular dynamics simulations of the KA Lennard-
Jones mixture for N = 150 total particles, at reduced temperatures kBT/e = 0.6 and kBT/e = 0.7, and
principal component density NAs3/V = 0.96. e and s are the Lennard-Jones parameters for the larger
(principal component) particles in the KA mixture. As the length of trajectories increases, the crossover in
Ks becomes sharper and happens at smaller values of s. (C and D) The peak in the susceptibility cs ¼ ∂Ks

∂s
becomes larger, and its position moves to smaller s with increasing tobs. The crossover of Ks reflects a first-
order transition in the infinite size limit. (E and F) Distribution of K at coexistence (where K* = Ks for s = s*).
For large tobs, the order parameter distribution at the coexistence fields* becomes bimodal, as expected for a
first-order transition.
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mean-square displacement of a particle in an
incremental time Dt. If two dynamical phases
coexist, one with proportionality constant ka and
the other with ki, then Ks will be a discontinuous
function of s at the condition of coexistence, s =
s*. As illustrated with Fig. 1 for a finite system,
the corresponding crossover will have width of
the order of 1/Ntobs because the mean square
fluctuations in the order parameter grow as
(Ntobs)

2. Further, the excess in free energy to
maintain a coexisting ensemble grows as an in-
terfacial area in space-time, so that trajectories
manifesting this coexistence are suppressed by a
factor that depends exponentially on this area. In
some cases (8), this area scales as N1–1/dtobs. The

value s* is proportional to the rate at which
configurations from the nonergodic “inactive”
phase relax back to the ergodic equilibrium fluid
if the driving field s is removed. In kinetically
constrained lattice models (9), which are ideal-
ized models of structural glass formers (16), this
rate is zero, that is, s* = 0. In other words, for
those models, undriven equilibrium dynamics
coexists with a nonergodic phase. Here, we show
that for more realistic atomistic models, and
therefore for real glass forming materials, s* is
small although perhaps nonzero.

The particular system we have considered is
Kob and Andersen’s (KA) two-component
mixture of Lennard-Jones particles (17). It has

NA= 0.8N principal particles, each with Lennard-
Jones diameter s and energy parameter e. In
addition, it has NB = 0.2N smaller secondary
particles, where their size and attractive energy
parameters are chosen so as to frustrate crystal-
lization (17). The structural and dynamical
properties we report for this model, including
the order parameter K[x(t)], refer to the principal
particles. We have carried out two independent
studies, one where trajectories are governed by
Newtonian molecular dynamics and the other
where trajectories are governed by aMonte Carlo
dynamics. With appropriate scaling of time, both
studies yield similar results. The results shown in
the figures of this paper are from the molecular
dynamics studies. For the incremental time, we
use Dt = 13.33(ms2/48e)1/2, where m is the mass
of the particles. Results from the Monte Carlo
dynamics plus additional information about our
computations are presented in (18). In terms of
the reduced temperature kBT/e, the KA model
behaves as an ordinary simple fluid at temper-
atures kBT/e > 1, but its relaxation slows and
large glassy fluctuations appear at lower temper-
atures. Around kBT/e = 0.4, relaxation becomes
so slow that equilibration of the model on current-
day computers becomes intractable. For what is
shown below, we work at less severe but none-
theless nontrivial supercooled conditions, 0.6 ≤
kBT/e ≤ 0.7.

Although the system does not crystallize
under equilibrium conditions, biasing the super-
cooled KA model toward an inactive phase, as
we do with transition path sampling of the s
ensemble, can induce crystallization. The effect is
pronounced for small periodically replicated
systems. It occurs because K[x(t)] by itself does
not discriminate between glass and crystal.
Although one phase is an equilibrium phase and
the other is not, both have low mobility. Thus, in
addition to accounting for the value of K, our
transition path sampling must also account for a
measure of crystallinity. In particular, we use a
common neighbor analysis (19) and bias against
trajectories with this measure of crystallinity (18).

Bistability and phase transition in trajectory
space. Our findings for the mean order parameter
and its distribution in the s ensemble (Fig. 2) re-
flect the qualitative features associated with a first-
order phase transition. The quantitative analysis of
finite-size scaling is beyond the capabilities of the
algorithms we have used in this work, but the
results we have obtained are similar to those
established in idealized kinetically constrained
models of glass formers (7–9). The susceptibility

cs ¼ −
∂Ks

∂s
¼ 〈fK½xðtÞ$−Ksg2〉s

has a peak that grows with increasing N and tobs.
The peak position is the finite system estimate of
s* (20). Its value decreases with increasingN and
tobs [system size scaling shown in (18)]. The
order parameter distribution is bimodal at this
value of s, and the minimum between its two
peaks decreases with increasing N and tobs. For
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Fig. 3. Comparison of structure and dynamics of active and inactive phases. (A) Radial distribution
function for the atoms of the principal component in the KA mixture. The equilibrium KA mixture is at
s = 0. The nonequilibrium mixture is at s= 0.03/s2Dt> s*. Here, s is the Lennard-Jones diameter for the
principal component atoms, and Dt ¼ 13:33ðms2=48eÞ1=2≃ t=15, where t is the structural relaxation
time. There is no appreciable difference in the static structures of the active, s < s*, and inactive, s > s*,
dynamical phases. (B) Self-intermediate scattering function for the same values of s. In the active phase,
correlation functions relax to zero. In the inactive phase, correlation functions remain at a nonzero value
even for the longest times; the inactive phase is nonergodic. These results were obtained by using
simulations of N = 150 total particles, at reduced temperature and principal component density kBT/e =
0.6 and NAs3/V = 0.96, respectively.
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Fig. 4. Space-time interface at phase coexistence. Representative overlap matrices Qðt,t′Þ ¼

N−1 P
N

i¼1
cosfq • ½riðtÞ − riðt′Þ$g taken from the ensemble of trajectories at the coexistence field s*, for

kBT/e = 0.6, tobs = 40t and N = 150 (Fig. 2B). (A) Typical trajectory from the inactive phase (from the low
Ks peak in Fig. 2F), where for all observation times the correlation function remains close to 1, indicating
nonergodic dynamics. (B) Typical trajectory at coexistence (for values ofKs in the trough of Fig. 2F), where
the overlapmatrix shows a sharp interface-like structure at t/t ≈ 20 separating an inactive region of space-
time at earlier times and an active region at later times. (C) Typical trajectory from the active phase (from
the high Ks peak in Fig. 2F), where the system’s dynamics is ergodic and the correlation function decays
rapidly to zero. The inhomogeneous features evident in (C) are finite size effects that would vanish in the
limit of infinite size, N → ∞.
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the range of values of N and tobs, the effects of
increasing tobs are greater than those of increasing
N. This asymmetry in the dependence on N and
tobs is also reflected in the structure of space-time
at coexistence. We will describe this structure but
first discuss a measure of ergodicity.

The particular measure we consider is the
behavior of the function

Fsðq,tÞ ¼
1

Ntobs
∑
tobs

t′¼0
∑
N

i¼1
〈expfiq•½riðt þ t′Þ − riðt′Þ$g〉s

At equilibrium, that is, s = 0, Fs(q, t) is the Van
Hove self-correlation or intermediate-scattering
function (21). In general, it is a mean overlap
between configurations displaced by a time t. The
extent to which it is nonzero in the limit of large
t is a measure of nonergodicity (22). We choose
the wave vector q to coincide with the first
maximum in the structure factor of the liquid
(or glass). With this choice, the time t for which
F0(q, t) = 1/e is a common definition of the
structural relaxation time.Fs(q, t) is shown in Fig.
3 for the active (i.e., ergodic) and inactive (i.e.,
nonergodic) phases. The relaxation time of the
active trajectories is much less than tobs, yet in-
active trajectories remain trapped in a single state
throughout the observation time. Figure 3 also
shows the radial distribution function for the
principal component of the mixture in the active
and inactive states. This average measure of
structure in the phase that can equilibrate (s = 0)
is virtually identical to that for the phase that is
driven to a nonergodic state (s > 0). Thus, fluc-
tuations from the mean structure are crucial to the
difference between glassy and fluid materials.

Figure 4 illustrates the structure of trajectory
space at conditions of active-inactive coexis-
tence, that is, at s = s*. Each panel illustrates an
overlap matrix,

Qðt, t′Þ ¼ N−1 ∑
N

i¼1
cosfq•½riðtÞ − riðt′Þ$g,

and records the similarity or overlap on a given
trajectory between configurations at different

times t and t′. The s ensemble average of this
quantity gives Fs(q, t – t′). The pictures in Fig. 4
illustrate the fluctuations from the mean, with the
distance from the diagonal reflecting the time
interval t – t′. At s = s*, there are some trajectories
with relatively high values of K indicative of the
active phase, others with relatively low values
indicative of the inactive phase, and lastly those
that are intermediate and that demonstrate phase
coexistence. Figure 4C shows a representative
trajectory with a value of K corresponding to the
active phase; see Fig. 2F. Here, motion is
plentiful, and the system quickly decorrelates as
t – t′ grows.

In contrast, the overlap matrix for inactive
trajectories, as illustrated in Fig. 4A, is homoge-
neous. The system remains correlated for the en-
tire observation time, so thatQ(t, t′) is large even
when |t – t′| is much greater than a structural
relaxation time t. Figure 4B shows a trajectory
where the active and inactive phases are sepa-
rated by a sharp temporal interface. These figures
might seem to resemble those found for trajecto-
ries of small equilibrium subsystems over time
periods that are small compared with the struc-
tural relaxation time (23, 24). However, overlap
matrices for trajectories of an equilibrated system
reveal a structure in space-time in which the sys-
tem undergoes multiple transitions between col-
lections of states with low energy and activity,
commonly termed “meta-basins.” Typical life-
times for these inactive basins are of the order of
a fraction of t. These lifetimes are negligible
compared with the very long lifetimes of inactive
states within the s ensemble.

Figure 5 illustrates the correlations between
the order parameter K and the behaviors of po-
tential energy and icosahedral ordering at the
coexistence field s*. The potential energy of the
inactive configurations is smaller, consistent with
their stability. For active trajectories, particles
sample many configurations, which leads to the
self-averaging of structural measures and is re-
flected in the width of the distribution, which is
significantly narrower for greater values of K.
However, a clear correlation between potential en-
ergy and dynamics does not imply a causal link.

Indeed, this thermodynamic variable cannot con-
trol the first-order transition that we describe here.
Rather, we must look to variables that measure
dynamics over a period of time. Although there is
a gradual increase in icosahedral ordering (19) as
K decreases, the observed correlation is far weaker
than that of the potential energy. The broad dis-
tribution at small K is once again indicative of
fluctuation dominance within the inactive phase.

Fluctuations, wetting, and critical points.
The existence of a first-order transition has many
consequences. For example, fluctuations in an
equilibrium system near to phase coexistence
grow rapidly as the surface tension between these
phases is reduced. Figure 2 indicates that the KA
mixture is near a coexistence line between active
and inactive phases at both of the temperatures
that we considered. Further, as the temperature is
reduced, the values of K for the two phases
approach each other, indicating that the surface
tension between the phases will decrease as
temperature decreases. We may therefore associ-
ate this decrease with the growth of fluctuations
within the active phase. These fluctuations are the
dynamical heterogeneities (5, 6) in the equilibri-
um dynamics of the glass former. A further con-
sequence of phase coexistence is the occurrence
of wetting phenomena (25). In the case of the
dynamical transition discussed here, “wetting” is
remembering the initial conditions, and an exam-
ple of this behavior can be seen for Fs(q, t) in
Fig. 3B. At s > s*, the initial time surface is fully
wetted by the inactive phase. At s = 0 < s*, there
is only a precursor to the wetting transition, a film
of finite thickness in time.

For some idealized kinetically constrained
models (7–9), coexistence between active and
inactive phases along the s = 0 line ends at a T = 0
critical point. We expect similarly that, for the
KA mixture, the order parameters of both the
active and inactive phases will approach the same
value, Ks → 0 as T → 0 and s = 0. However,
where active-inactive coexistence is present in
the kinetically constrained models for all temper-
atures when s = 0, the same cannot be true for
models with finite intermolecular forces. At high
enough temperatures, such forces are insufficiently

Fig. 5. Test of correlation
between space-time order
parameter and potential
energy and icosahedral
order. (A) Potential energy
per particle in units of e
versus dynamical order
parameter K of a trajecto-
ry. (B) Icosahedral order,
as quantified by the CNA-
155 parameter of the
common neighbor analy-
sis, as a function of K.
Results are for trajectories
at kBT/e = 0.6, tobs = 40t,
and N = 150.
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constraining to produce collective behavior.
Indeed, we have found that at small values of s,
the order parameter distribution for the KA mix-
ture ceases to be bimodal when kBT/e is sig-
nificantly larger than 1 (18). One possibility is
that the first-order coexistence line ends at an
upper critical point at finite s andT. This possibility
remains to be investigated.

The first-order transition we have described is
to be contrasted with the scenario that emerges
from other approaches, such as mode-coupling
theory (26, 27) and the random first-order tran-
sition theory (28, 29). These theories predict the
existence of dynamic or thermodynamic transi-
tions controlled by thermodynamic fields such as
temperature or pressure. In contrast, our results
show that the order-disorder transition is in the
trajectories of the dynamics and is thus controlled
by dynamic fields. Perhaps a thermodynamic
manifestation can be related to the picture of an
avoided phase transition (30). In any case, our
numerical results here suggest that in real glass
formers this dynamical order-disorder phenome-
non is close to that predicted from idealized
kinetically constrained models (7–9). Thus, we
pass the baton to the experimenters to find pro-
tocols for controlling the dynamic observable K
or driving field s that allow experimental probes
of the transition described in this work.
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Functional Proteomics Identify
Cornichon Proteins as Auxiliary
Subunits of AMPA Receptors
Jochen Schwenk,1* Nadine Harmel,1* Gerd Zolles,1* Wolfgang Bildl,1
Akos Kulik,4 Bernd Heimrich,4 Osamu Chisaka,6 Peter Jonas,3 Uwe Schulte,1,2
Bernd Fakler,1,5† Nikolaj Klöcker1†

Glutamate receptors of the AMPA-subtype (AMPARs), together with the transmembrane
AMPAR regulatory proteins (TARPs), mediate fast excitatory synaptic transmission in the
mammalian brain. Here, we show by proteomic analysis that the majority of AMPARs in the rat
brain are coassembled with two members of the cornichon family of transmembrane proteins,
rather than with the TARPs. Coassembly with cornichon homologs 2 and 3 affects AMPARs in two
ways: Cornichons increase surface expression of AMPARs, and they alter channel gating by
markedly slowing deactivation and desensitization kinetics. These results demonstrate that
cornichons are intrinsic auxiliary subunits of native AMPARs and provide previously unknown
molecular determinants for glutamatergic neurotransmission in the central nervous system.

Fast excitatory synaptic transmission in the
mammalian CNS is mostly mediated by
AMPA receptors (AMPARs), ligand-gated

ion channels that are activated by glutamate re-
leased from the presynaptic terminals (1–4). On
activation, AMPARs provide the transient excit-
atory postsynaptic current (EPSC) that depolarizes
themembrane and initiates downstream processes,
such as the generation of action potentials or syn-
aptic plasticity (5, 6). The time course and amplitude
of AMPAR-mediated EPSCs exhibit considerable
variability among neurons and synapses and strong-

ly depend on the properties of the postsynaptic
AMPARs (7, 8).

AMPARs are tetrameric assemblies of a sub-
units with distinct properties that are encoded by
the glutamate receptor (GluR) genes GluR-A to
GluR-D (9–11) [or GluA1-4 according to the In-
ternational Union of Basic and Clinical Pharma-
cology nomenclature (12)] and their variations
resulting from alternative splicing and RNA edit-
ing (13–15). In most central neurons, multiple
variants of these GluR proteins are expressed and
assembled into heteromultimeric channels that

display a wide range of gating kinetics and Ca2+

permeabilities (16–19). In addition to the a sub-
units, the properties of theAMPARs aremodulated
by a family of transmembrane AMPAR regulatory
proteins (TARPs) (20, 21). TheTARPs coassemble
with the GluR proteins and through direct protein-
protein interactions affect the gating, permeability
and pharmacology of the AMPARs (21–25). Fur-
thermore, the TARPs influence the number and
subcellular localization of AMPARs by promoting
their trafficking to the plasma membrane and their
targeting to the synapse (26, 27).

The profound impact of the TARPs led to the
assumption that almost all AMPARs in the mam-
malian brain may be assembled with these aux-
iliary subunits (28, 29). However, only a minor
portion of the AMPAR complexes in the rat brain
(~30%) are associatedwith g-2 and g-3, the TARPs
with the most widespread expression pattern
(30, 31) (Fig. 1A, arrowhead). It is, therefore,
possible that native AMPARs contain further yet-
unknown protein constituents that may be iden-
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